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Identification of Network Connected systems with
“unknown” communication links

This lecture: Focus on Identifying KrARX (Quarks) models
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Structure in Sensor Networks

A (large-2D) network of (identical) sensors that are spatially and temporally
coupled

Goal: Find spatial “topology” and temporal order PLUS the “parameters” of
the “structured” spatial-temporal model that governs the sensor dynamics.
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Static Interaction between two data vectors

y(k) = Mu(k)

?

[

u11(k) · · · ur1 1(k)
]

[

y11(k) · · · us1 1(k)
]

Network “M”
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Static Interaction between two data vectors

y(k) = Mu(k)

Features:

1 Data is partitioned:

u11(k)y11(k)

ur11(k)yr11(k)

u12(k)y12(k)

uij(k)yij(k)
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Static Interaction between two data vectors
y(k) = Mu(k)

Features:

1 Data is partitioned:
u11y11

ur11yr11
u12y12

uijyij

2 Structured matrices:

Toeplitz, Semi-Sequentially Separable, etc.
Low rank plus sparse (Mattia Zorzi, Alessandro Chiuso, 2016)
α-decomposable matrices

· · ·

7 / 22



C
S
Instruments

ontrol
cientific

α-decomposable matrices

A “generalization” of the class of system matrices of decomposable systems [1]1

introduced in [2]2

Definition

Let P be an N × N “pattern matrix”. Define βj =
∑j

i=1 Ni (with β0 = 0) and
I[a1:a2] as an N × N diagonal matrix which contains 1 in the diagonal entries of
indices from a1 to a2 (included) and 0 elsewhere, then an α-decomposible matrix
(for a given α) is a matrix of the following kind:

M =

α
∑

i=1

(I[βi−1+1:βi ] ⊗ M(i)
a ) +

α
∑

i=1

(I[βi−1+1:βi ]P ⊗ M
(i)
b )

The matrices M
(i)
a are the diagonal blocks of M , while the matrices M

(i)
b

constitute the off-diagonal blocks, according to the structure of P.

1[1] Massioni, Verhaegen, “Distributed Control for Identical Dynamically Coupled Systems: A
Decomposition Approach” IEEE-TAC 54(1):124-135, 2009

2[2] Massioni, “Distributed control for alpha-heterogeneous dynamically coupled systems”
Syst & Con. Let. 72:30-35, 2014
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Sum of Kronecker Products [Van Loan, LA 2004]

Definition operator R(.)

Let a matrix A be partitioned as:









a11 a12 | a13 a14

a21 a22 | a23 a24

a31 a32 | a33 a34

a41 a42 | a43 a44









=

[

A11 | A12

A21 | A22

]

then the “reshuffle” operator R(.) applied on A yields:

R(A) =









a11 a21 a12 a22

a31 a41 a32 a42

a13 a23 a14 a24

a33 a43 a34 a44









=









vec(A11)
T

vec(A21)
T

vec(A12)
T

vec(A22)
T








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Sum of Kronecker Products [Van Loan, LA 2004]

Theorem: The Kronecker Product SVD
Let

A =







A11 · · · A1,c2

...
. . .

...

Ar2,1 · · · Ar2,c2






Ai2,j2 ∈ R

r1×c1

then there exists U1, · · · , UrKP
∈ R

r2×c2 , V1, · · · , VrKP
∈ R

r1×c1 , and scalars
σ1 ≥ · · · ≥ σrKP

> 0, such that,

A =

rKP
∑

ℓ=1

σℓUℓ ⊗ Vℓ

With the sets {vec(Uℓ)} and {vec(Vℓ)} orthonormal and rKP is the Kronecker
rank of A w.r.t. block-partioning of A.
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Kronecker (product) ARX models (KrARX = “quarks”)

Definition
Let the data of a 2D “square” sensor grid be stored into the matrix:

Sk =











s1,1(k) s1,2(k) · · · s1,N(k)
s2,1(k) s2,2(k) s2,N(k)

...
. . .

...

sN,1(k) sN,2(k) · · · sN,N(k)











∈ R
pN×N

then the KrARX model of temporal order n and “spatial” order r is given as:

vec

(

Sk

)

=

n
∑

i=1

Aivec

(

Sk−i

)

+ v(k)

with v(k) a zero-mean white noise sequence and Ai ∈ R
pN2×pN2

given as
∑r

j=1 M(b
(j)
i )T ⊗ M(a

(j)
i ). For affine parametrizations M(b

(j)
i

) and M(a
(j)
i
).
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Matrix Format of KrARX

Lemma

The KrARX model of order (n, r) can also be written into the following Matrix
Format:

Sk =

n
∑

i=1

(

r
∑

j=1

M(a
(j)
i )Sk−iM(b

(j)
i )

)

+ Vk

with vec

(

Vk

)

= v(k). (Proof follows from vec

(

XYZ

)

=

(

ZT ⊗ X

)

vec

(

Y

)

)

This can also be written explicitly as,

Sk =

n
∑

i=1

[

M(a
(1)
i ) · · · M(a

(r)
i )

]







Sk−i · · · 0
...

. . .
...

0 · · · Sk−i















M(b
(1)
i )

...

M(b
(r)
i )









+ Vk

Example: KrARX of order (1,1) is given as:

Sk = BT Sk−1A + Vk
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Estimation Method 1

For a given choice of the temporal order n, the estimation of the KrARX
coefficient matrix Ai can be done via the following multi-criteria optimization
problem:

min
Ai

Ndat
∑

k=n+1

‖vec

(

Sk

)

−
n

∑

i=1

Aivec

(

Sk−i

)

‖2
F + λrank

(

R(Ai)
)

for the “trade-off” parameter λ.
Advantages:

1 Convex relaxation via the nuclear norm.

2 “Automatic approximation” of the spatial order r

Disadvantages:

1 “Curse of dimensionality” ( Ai ∈ R
pN2×pN2

)
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Estimation Method 2: ALS
Illustrated for KrARX of order (1,1):

Sk = BT Sk−1A + Vk Sk , A, B ∈ R
N×N

Hereby we denote the ℓ-th column of A and B resp. as aℓ and bℓ, then the
alternating iteration, consists (per iteration) of the following three steps:

1 Step 1: For a given B̂ (estimate):

∀ℓ = 1, · · · , N : min
aℓ

Ndat
∑

i=1

‖Si(:, ℓ) − B̂T Si−1aℓ‖
2
2 → α̂ℓ

2 Step 2: Normalization âℓ =
α̂ℓ

‖α̂ℓ‖2

3 Step 3: For a given Â (estimate):

∀ℓ = 1, · · · , N : min
bℓ

Ndat
∑

i=1

‖Si(ℓ, :) − bT
ℓ Si−1Â‖2

2 → b̂ℓ+1
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Convergence Analysis ALS

Consider the estimation of the ij-the entry in the KrARX (Matrix form) of order
(1, 1):

sij(k) = bT
i Sk−1aj + vij(k)

Then with a value of b̂i(s) at iteration s the 3-step procedure can be summarized
as:

b̂i(s + 1) = F3(F2(F1(b̂i(s)) := F (b̂i(s))

And the question of convergence boils down to the existance of a unique fixed
point of the composite map F (.). 3

3Based on the work of Guoqi Li, et. al, “Fixed point iteration in identifying bilinear models,”
System & Control Let 83:28-37, 2015.
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Convergence Analysis ALS

Theorem [Guoqi Li, et. al]

Under the assumptions that,

1 The noise vij(k) is i.i.d. with mean zero and finite variance.

2 The least squares problem in Step 1 and 3 have a unique solution.

3 Either ‖bi‖2 or ‖aj‖2 is known and the first nonzero entry of bi or aj is
positive.

The mapping F (.) : Xb → Xb is a contraction mapping on Xb when Ndat → ∞
and asymptotically has a unique fixed point on Xb which corresponds to the true
parameter b.
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Wavefront sensor Prediction

Schematic Shack-Hartmann Sensor

φ(x , y)

s(xi , yi )

Let the time-dependency of s(xi , yi) be
denoted as si,j(k), then this 2D-sensor
provides the data in matrix form:

S(k)

Simulation [Beghi, et. al, 2008]

Kolmogorov model for spatial
correlation

Frozen flow temporal dynamics

N × N lenslet array

Nt = 5000.
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Reconstruction Performance versus model complexity

n = 1 AR models VAF versus model complexity (0-norm)
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Just the beginning ...

Non-rectangular measurement grids

AR(MA)X model identification

Subspace model identification

etc.

—————–

B. Sinquin and M. Verhaegen, “Kronecker-based modeling of networks with unknown

communication links,” http://arxiv.org/abs/1609.07518
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