Identification of Network Connected systems with "unknown" communication links This lecture: Focus on Identifying KrARX (Quarks) models

Baptiste Sinquin and Michel Verhaegen¹

¹Control for Scientific Imaging Systems, (CSI) Group Delft Center for Systems and Control

 2 Cecture at the ERNSI Workshop Cison di Valmarino 2016

26 September 2016

Structure in Sensor Networks

- A (large-2D) network of (identical) sensors that are spatially and temporally coupled
- Goal: Find spatial "topology" and temporal order PLUS the "parameters" of the "structured" spatial-temporal model that governs the sensor dynamics.

Static Interaction between two data vectors

Static Interaction between two data vectors

 $y(k) = Mu(k)$

Features:

Static Interaction between two data vectors $y(k) = Mu(k)$

Features:

- ² Structured matrices:
	- **Toeplitz, Semi-Sequentially Separable, etc.**
	- Low rank plus sparse (Mattia Zorzi, Alessandro Chiuso, 2016)
	- *α*-decomposable matrices
	- · · ·

α-decomposable matrices

A "generalization" of the class of system matrices of decomposable systems $[1]$ ¹ introduced in $[2]^2$

Definition

Let $\mathscr P$ be an $N \times N$ "pattern matrix". Define $\beta_j = \sum_{i=1}^j N_i$ (with $\beta_0 = 0$) and $I_{[a_1:a_2]}$ as an $N \times N$ diagonal matrix which contains 1 in the diagonal entries of indices from a_1 to a_2 (included) and 0 elsewhere, then an α -decomposible matrix

$$
\text{(for a given } \alpha \text{) is a matrix of the following kind:}\\ \mathcal{M} = \sum_{i=1}^{\infty} (I_{[\beta_{i-1}+1:\beta_i]} \otimes M_a^{(i)}) + \sum_{i=1}^{\infty} (I_{[\beta_{i-1}+1:\beta_i]} \mathcal{P} \otimes M_b^{(i)})
$$

The matrices $M_{a}^{(i)}$ are the diagonal blocks of \mathscr{M} , while the matrices $M_{b}^{(i)}$ b constitute the off-diagonal blocks, according to the structure of \mathscr{P} .

 $^1\rm{[1]}$ Massioni, Verhaegen, "Distributed Control for Identical Dynamically Coupled Systems: A Decomposition Approach" IEEE-TAC 54(1):124-135, 2009

 $^{2}[2]$ Massioni, "Distributed control for alpha-heterogeneous dynamically coupled systems" Syst & Con. Let. 72:30-35, 2014

Sum of Kronecker Products [Van Loan, LA 2004]

Definition operator $\mathscr{R}(.)$

Let a matrix A be partitioned as:

$$
\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}
$$

then the "reshuffle" operator $\mathcal{R}(.)$ applied on A yields:

Sum of Kronecker Products [Van Loan, LA 2004]

Theorem: The Kronecker Product SVD

Let

$$
A = \begin{bmatrix} A_{11} & \cdots & A_{1,c_2} \\ \vdots & \ddots & \vdots \\ A_{r_2,1} & \cdots & A_{r_2,c_2} \end{bmatrix} \quad A_{i_2,j_2} \in \mathbb{R}^{r_1 \times c_1}
$$

then there exists $U_1,\cdots,U_{r_{\mathsf{KP}}}\in\mathbb{R}^{r_2\times c_2},\ V_1,\cdots,V_{r_{\mathsf{KP}}}\in\mathbb{R}^{r_1\times c_1},$ and scalars $\sigma_1 \geq \cdots \geq \sigma_{\text{free}} > 0$, such that,

$$
A=\sum_{\ell=1}^{r_{\mathsf{KP}}} \sigma_\ell U_\ell \otimes V_\ell
$$

With the sets $\{vec(U_\ell)\}\$ and $\{vec(V_\ell)\}\$ orthonormal and r_{KP} is the Kronecker rank of A w.r.t. block-partioning of A.

Kronecker (product) ARX models (KrARX = "quarks")

Definition

Let the data of a 2D "square" sensor grid be stored into the matrix:

$$
S_k = \begin{bmatrix} s_{1,1}(k) & s_{1,2}(k) & \cdots & s_{1,N}(k) \\ s_{2,1}(k) & s_{2,2}(k) & s_{2,N}(k) \\ \vdots & \vdots & \ddots & \vdots \\ s_{N,1}(k) & s_{N,2}(k) & \cdots & s_{N,N}(k) \end{bmatrix} \in \mathbb{R}^{pN \times N}
$$

then the KrARX model of temporal order n and "spatial" order r is given as:

$$
\text{vec}\left(S_k\right) = \sum_{i=1}^n A_i \text{vec}\left(S_{k-i}\right) + v(k)
$$

with $v(k)$ a zero-mean white noise sequence and $A_i \in \mathbb{R}^{pN^2 \times pN^2}$ given as $\sum_{j=1}^r M(b_i^{(j)})^{\mathsf{T}} \otimes M(a_i^{(j)})$. For affine parametrizations $M(b_i^{(j)})$ and $M(a_i^{(j)})$.

Delft Center for Systems and Control

Matrix Format of KrARX

Lemma

The KrARX model of order (n*,*r) can also be written into the following Matrix Format:

$$
S_k = \sum_{i=1}^n \left(\sum_{j=1}^r M(a_i^{(j)}) S_{k-i} M(b_i^{(j)}) \right) + V_k
$$

with vec (V_k) = $v(k)$. (Proof follows from vec (XYZ) = $(Z^T \otimes X)$ vec (Y))

This can also be written explicitly as, $S_k = \sum_{n=1}^{n}$ $i=1$ $\left[M(a_i^{(1)}) \cdots M(a_i^{(r)})\right]$ $\sqrt{ }$ $\overline{}$ S_{k-i} … 0 *.* 0 · · · S_{k-i} 1 $\overline{}$ $\sqrt{ }$ $\overline{}$ $M(b_i^{(1)})$ *. . .* $M(b_i^{(r)})$ 1 $\overline{}$ $+$ V_k

Example: KrARX of order (1,1) is given as:

$$
S_k = B^T S_{k-1} A + V_k
$$

Estimation Method 1

For a given choice of the temporal order n , the estimation of the KrARX coefficient matrix A_i can be done via the following *multi-criteria optimization* problem:

$$
\min_{A_i} \sum_{k=n+1}^{N_{\text{dat}}} \|\text{vec}\left(S_k\right) - \sum_{i=1}^n A_i \text{vec}\left(S_{k-i}\right)\|_F^2 + \lambda \text{rank}\left(\mathcal{R}(A_i)\right)
$$

for the "trade-off" parameter *λ*. Advantages:

- **4** Convex relaxation via the nuclear norm.
- ² "Automatic approximation" of the spatial order *r*

Disadvantages:

$$
\bullet \text{ "Curse of dimensionality" (} A_i \in \mathbb{R}^{pN^2 \times pN^2} \text{)}
$$

Estimation Method 2: ALS

Illustrated for KrARX of order (1,1):

$$
S_k = B^T S_{k-1} A + V_k \quad S_k, A, B \in \mathbb{R}^{N \times N}
$$

Hereby we denote the *ℓ*-th column of A and B resp. as a*^ℓ* and b*ℓ*, then the alternating iteration, consists (per iteration) of the following three steps:

 \bullet *Step 1:* For a given \hat{B} (estimate):

$$
\forall \ell=1,\cdots,N: \min_{\boldsymbol{a}_{\ell}}\sum_{i=1}^{N_{\rm dat}} \|S_i(:,\ell)-\hat{B}^{\mathsf{T}}S_{i-1}\boldsymbol{a}_{\ell}\|_2^2 \quad \rightarrow \hat{\alpha}_{\ell}
$$

• Step 2: Normalization
$$
\hat{a}_{\ell} = \frac{\hat{\alpha}_{\ell}}{\|\hat{\alpha}_{\ell}\|_2}
$$

9 Step 3: For a given
$$
\hat{A}
$$
 (estimate):

\n
$$
\forall \ell = 1, \cdots, N: \min_{b_{\ell}} \sum_{i=1}^{N_{\text{dat}}} \|S_i(\ell, :) - b_{\ell}^T S_{i-1} \hat{A}\|_2^2 \longrightarrow \hat{b}_{\ell+1}
$$

Convergence Analysis ALS

Consider the estimation of the ij-the entry in the KrARX (Matrix form) of order $(1, 1)$:

$$
s_{ij}(k) = b_i^T S_{k-1} a_j + v_{ij}(k)
$$

Then with a value of $\hat{b}_i(s)$ at iteration s the 3-step procedure can be summarized as:

$$
\hat{b}_i(s+1) = \mathscr{F}_3(\mathscr{F}_2(\mathscr{F}_1(\hat{b}_i(s)) := \mathscr{F}(\hat{b}_i(s))
$$

And the question of convergence boils down to the existance of a unique fixed point of the composite map $\mathscr{F}(.)$.³

 3 Based on the work of Guoqi Li, et. al, "Fixed point iteration in identifying bilinear models," System & Control Let 83:28-37, 2015.

Convergence Analysis ALS

Theorem [Guoqi Li, et. al]

Under the assumptions that,

- **1** The noise $v_{ii}(k)$ is i.i.d. with mean zero and finite variance.
- ² The least squares problem in Step 1 and 3 have a unique solution.
- \bullet Either $\|b_i\|_2$ or $\|a_j\|_2$ is known and the first nonzero entry of b_i or a_j is positive.

The mapping $\mathscr{F}(.) : X_b \to X_b$ is a contraction mapping on X_b when $N_{\text{dat}} \to \infty$ and asymptotically has a unique fixed point on X_b which corresponds to the true parameter b.

Wavefront sensor Prediction

Schematic Shack-Hartmann Sensor

Let the time-dependency of $s(x_i, y_i)$ be denoted as $s_{i,j}(k)$, then this 2D-sensor provides the data in matrix form:

 $S(k)$

Simulation [Beghi, et. al, 2008]

- Kolmogorov model for spatial correlation
- Frozen flow temporal dynamics
- $N \times N$ lenslet array
- $N_t = 5000$.

Reconstruction Performance versus model complexity

 $n = 1$ AR models VAF versus model complexity (0-norm)

Just the beginning ...

- Non-rectangular measurement grids
- AR(MA)X model identification
- Subspace model identification

etc.

—————–

B. Sinquin and M. Verhaegen, "Kronecker-based modeling of networks with unknown communication links," <http://arxiv.org/abs/1609.07518>

