Identification of Network Connected systems with "unknown" communication links This lecture: Focus on Identifying KrARX (Quarks) models

Baptiste Sinquin and Michel Verhaegen¹

¹Control for Scientific Imaging Systems, (CSI) Group Delft Center for Systems and Control

 $^2\mathcal{L}\text{ecture}$ at the ERNSI Workshop Cison di Valmarino 2016

26 September 2016

Structure in Sensor Networks

- A (large-2D) network of (identical) sensors that are spatially and temporally coupled
- Goal: Find spatial "topology" and temporal order PLUS the "parameters" of the "structured" spatial-temporal model that governs the sensor dynamics.

Static Interaction between two data vectors

Static Interaction between two data vectors

y(k) = Mu(k)

Features:

Static Interaction between two data vectors y(k) = Mu(k)

Features:

Data is partitioned:

- Structured matrices:
 - Toeplitz, Semi-Sequentially Separable, etc.
 - Low rank plus sparse (Mattia Zorzi, Alessandro Chiuso, 2016)
 - α -decomposable matrices
 - <u>ه</u> ...

α -decomposable matrices

A "generalization" of the class of system matrices of decomposable systems $[1]^1$ introduced in $[2]^2$

Definition

Let \mathscr{P} be an $N \times N$ "pattern matrix". Define $\beta_j = \sum_{i=1}^j N_i$ (with $\beta_0 = 0$) and $I_{[a_1:a_2]}$ as an $N \times N$ diagonal matrix which contains 1 in the diagonal entries of indices from a_1 to a_2 (included) and 0 elsewhere, then an α -decomposible matrix (for a given α) is a matrix of the following kind:

$$\mathscr{M} = \sum_{i=1} (I_{[\beta_{i-1}+1:\beta_i]} \otimes M_a^{(i)}) + \sum_{i=1} (I_{[\beta_{i-1}+1:\beta_i]} \mathscr{P} \otimes M_b^{(i)})$$

The matrices $M_a^{(i)}$ are the diagonal blocks of \mathcal{M} , while the matrices $M_b^{(i)}$ constitute the off-diagonal blocks, according to the structure of \mathscr{P} .

 $^1[1]$ Massioni, Verhaegen, "Distributed Control for Identical Dynamically Coupled Systems: A Decomposition Approach" IEEE-TAC 54(1):124-135, 2009

 $^2[2]$ Massioni, "Distributed control for alpha-heterogeneous dynamically coupled systems" Syst & Con. Let. 72:30-35, 2014

Sum of Kronecker Products [Van Loan, LA 2004]

Definition operator $\mathscr{R}(.)$

Let a matrix A be partitioned as:

$$\begin{bmatrix} a_{11} & a_{12} \mid a_{13} & a_{14} \\ a_{21} & a_{22} \mid a_{23} & a_{24} \\ \hline a_{31} & a_{32} \mid a_{33} & a_{34} \\ a_{41} & a_{42} \mid a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} A_{11} \mid A_{12} \\ \hline A_{21} \mid A_{22} \end{bmatrix}$$

then the "reshuffle" operator $\mathscr{R}(.)$ applied on A yields:

$\mathscr{R}(A) = -$	a ₁₁	a ₂₁	<i>a</i> ₁₂	a ₂₂		$\left[\operatorname{vec}(A_{11})^T\right]$
	a ₃₁	a_{41}	a 32	<i>a</i> ₄₂		$\operatorname{vec}(A_{21})^{T}$
	a ₁₃	a 23	a_{14}	<i>a</i> ₂₄		$\operatorname{vec}(A_{12})^{T}$
	a ₃₃	a ₄₃	<i>a</i> ₃₄	<i>a</i> 44		$\left[\operatorname{vec}(A_{22})^{T}\right]$

Sum of Kronecker Products [Van Loan, LA 2004]

Theorem: The Kronecker Product SVD

Let

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1,c_2} \\ \vdots & \ddots & \vdots \\ A_{r_2,1} & \cdots & A_{r_2,c_2} \end{bmatrix} \quad A_{i_2,j_2} \in \mathbb{R}^{r_1 \times c_1}$$

then there exists $U_1, \cdots, U_{r_{KP}} \in \mathbb{R}^{r_2 \times c_2}$, $V_1, \cdots, V_{r_{KP}} \in \mathbb{R}^{r_1 \times c_1}$, and scalars $\sigma_1 \geq \cdots \geq \sigma_{r_{KP}} > 0$, such that,

$$\mathsf{A} = \sum_{\ell=1}^{\mathsf{r_{KP}}} \sigma_\ell \mathsf{U}_\ell \otimes \mathsf{V}_\ell$$

With the sets $\{vec(U_{\ell})\}\$ and $\{vec(V_{\ell})\}\$ orthonormal and r_{KP} is the Kronecker rank of A w.r.t. block-partioning of A.

Kronecker (product) ARX models (KrARX = "quarks")

Definition

Let the data of a 2D "square" sensor grid be stored into the matrix:

$$S_{k} = \begin{bmatrix} s_{1,1}(k) & s_{1,2}(k) & \cdots & s_{1,N}(k) \\ s_{2,1}(k) & s_{2,2}(k) & & s_{2,N}(k) \\ \vdots & & \ddots & \vdots \\ s_{N,1}(k) & s_{N,2}(k) & \cdots & s_{N,N}(k) \end{bmatrix} \in \mathbb{R}^{pN \times N}$$

then the KrARX model of temporal order n and "spatial" order r is given as:

$$\operatorname{vec}(S_k) = \sum_{i=1}^n A_i \operatorname{vec}(S_{k-i}) + v(k)$$

with v(k) a zero-mean white noise sequence and $A_i \in \mathbb{R}^{pN^2 \times pN^2}$ given as $\sum_{i=1}^{r} M(b_i^{(j)})^T \otimes M(a_i^{(j)})$. For affine parametrizations $M(b_i^{(j)})$ and $M(a_i^{(j)})$.

DCSC Delft Center for Systems and Control

Matrix Format of KrARX

Lemma

The KrARX model of order (n, r) can also be written into the following Matrix Format:

$$S_k = \sum_{i=1}^n \Big(\sum_{j=1}^r M(a_i^{(j)}) S_{k-i} M(b_i^{(j)}) \Big) + V_k$$

with $\operatorname{vec}(V_k) = v(k)$. (Proof follows from $\operatorname{vec}(XYZ) = (Z^T \otimes X)\operatorname{vec}(Y)$)

This can also be written explicitly as, $S_{k} = \sum_{i=1}^{n} \begin{bmatrix} M(a_{i}^{(1)}) & \cdots & M(a_{i}^{(r)}) \end{bmatrix} \begin{bmatrix} S_{k-i} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & S_{k-i} \end{bmatrix} \begin{bmatrix} M(b_{i}^{(1)}) \\ \vdots \\ M(b_{i}^{(r)}) \end{bmatrix} + V_{k}$

Example: KrARX of order (1,1) is given as:

$$S_k = B^T S_{k-1} A + V_k$$

Estimation Method 1

For a given choice of the temporal order n, the estimation of the KrARX coefficient matrix A_i can be done via the following *multi-criteria optimization* problem:

$$\min_{A_i} \sum_{k=n+1}^{N_{\text{dat}}} \| \text{vec}(S_k) - \sum_{i=1}^n A_i \text{vec}(S_{k-i}) \|_F^2 + \lambda \text{rank}(\mathscr{R}(A_i))$$

for the "trade-off" parameter λ . Advantages:

- Convex relaxation via the nuclear norm.
- Automatic approximation" of the spatial order r

Disadvantages:

• "Curse of dimensionality" (
$$A_i \in \mathbb{R}^{pN^2 imes pN^2}$$
)

Estimation Method 2: ALS

Illustrated for KrARX of order (1,1):

$$S_k = B^T S_{k-1} A + V_k \quad S_k, A, B \in \mathbb{R}^{N \times N}$$

Hereby we denote the ℓ -th column of A and B resp. as a_{ℓ} and b_{ℓ} , then the *alternating iteration*, consists (per iteration) of the following three steps:

• Step 1: For a given \hat{B} (estimate):

$$\begin{aligned} \forall \ell = 1, \cdots, N : \min_{a_{\ell}} \sum_{i=1}^{N_{\text{dat}}} \|S_i(:, \ell) - \hat{B}^T S_{i-1} a_{\ell}\|_2^2 & \rightarrow \hat{\alpha}_{\ell} \\ Step 2: \text{ Normalization } \hat{a}_{\ell} &= \frac{\hat{\alpha}_{\ell}}{\|\hat{\alpha}_{\ell}\|_2} \\ Step 3: \text{ For a given } \hat{A} \text{ (estimate):} \\ &\forall \ell = 1, \cdots, N : \min_{b_{\ell}} \sum_{i=1}^{N_{\text{dat}}} \|S_i(\ell, :) - b_{\ell}^T S_{i-1} \hat{A}\|_2^2 & \rightarrow \hat{b}_{\ell+1} \end{aligned}$$

 $\overline{i=1}$

Convergence Analysis ALS

Consider the estimation of the ij-the entry in the KrARX (Matrix form) of order (1, 1):

$$s_{ij}(k) = b_i^T S_{k-1} a_j + v_{ij}(k)$$

Then with a value of $\hat{b}_i(s)$ at iteration *s* the 3-step procedure can be summarized as:

$$\hat{b}_i(s+1) = \mathscr{F}_3(\mathscr{F}_2(\mathscr{F}_1(\hat{b}_i(s))) := \mathscr{F}(\hat{b}_i(s))$$

And the question of convergence boils down to the existance of a unique fixed point of the composite map $\mathscr{F}(.)$.³

 $^3\text{Based}$ on the work of Guoqi Li, et. al, "Fixed point iteration in identifying bilinear models," System & Control Let 83:28-37, 2015.

Convergence Analysis ALS

Theorem [Guoqi Li, et. al]

Under the assumptions that,

- The noise $v_{ij}(k)$ is i.i.d. with mean zero and finite variance.
- Solution The least squares problem in Step 1 and 3 have a unique solution.
- Either ||b_i||₂ or ||a_j||₂ is known and the first nonzero entry of b_i or a_j is positive.

The mapping $\mathscr{F}(.): X_b \to X_b$ is a contraction mapping on X_b when $N_{dat} \to \infty$ and *asymptotically* has a unique fixed point on X_b which corresponds to the true parameter *b*.

Wavefront sensor Prediction

Schematic Shack-Hartmann Sensor

Let the time-dependency of $s(x_i, y_i)$ be denoted as $s_{i,j}(k)$, then this 2D-sensor provides the data in matrix form:

S(k)

Simulation [Beghi, et. al, 2008]

- Kolmogorov model for spatial correlation
- Frozen flow temporal dynamics
- $N \times N$ lenslet array
- $N_t = 5000.$

Reconstruction Performance versus model complexity

 $n = 1 \ AR \ models$

VAF versus model complexity (0-norm)

Just the beginning ...

- Non-rectangular measurement grids
- AR(MA)X model identification
- Subspace model identification

• etc.

B. Sinquin and M. Verhaegen, "Kronecker-based modeling of networks with unknown communication links," http://arxiv.org/abs/1609.07518

